Superoxide generation links protein kinase C activation to impaired ATP-sensitive K+ channel function after brain injury.
نویسنده
چکیده
BACKGROUND AND PURPOSE--Endothelin-1, in concentrations similar to that present in cerebrospinal fluid after fluid percussion brain injury (FPI), increases superoxide anion (O2-) production. Endothelin-1 also contributes to altered cerebral hemodynamics after FPI through impairment of ATP-sensitive K+ (KATP) channel function through protein kinase C (PKC) activation. Generation of O2- additionally occurs after FPI. Nitric oxide and cGMP elicit pial artery dilation through KATP channel activation. The present study was designed to determine whether PKC activation generates O2-, which, in turn, could link such activation to impaired KATP channel function after FPI. METHODS--Injury of moderate severity (1.9 to 2.1 atm) was produced by the lateral FPI technique in anesthetized newborn pigs equipped with a closed cranial window. Superoxide dismutase-inhibitable nitroblue tetrazolium (NBT) reduction was determined as an index of O2- generation. RESULTS--Phorbol 12, 13-dibutyrate (10(-6) mol/L), a PKC activator, increased superoxide dismutase-inhibitable NBT reduction from 1+/-1 to 37+/-5 pmol/mm2. Staurosporine (10(-7) mol/L), a PKC antagonist, blocked the NBT reduction after phorbol 12,13-dibutyrate and blunted the NBT reduction observed after FPI (1+/-1 to 15+/-2 versus 1+/-1 to 5+/-1 pmol/mm2 after FPI in the absence versus presence of staurosporine). Exposure of the cerebral cortex to a xanthine oxidase O2--generating system increased NBT reduction in a manner similar to FPI and blunted pial artery dilation to the KATP channel agonists cromakalim and calcitonin gene-related peptide, the nitric oxide releasers sodium nitroprusside and S-nitroso-N-acetylpenicillamine, and the cGMP analogue 8-bromo-cGMP (10+/-1% and 21+/-1% versus 4+/-1% and 9+/-1% for 10(-8) and 10(-6) mol/L cromakalim before and after activated oxygen-generating system exposure). CONCLUSIONS--These data show that PKC activation increases O2- production and contributes to such production observed after FPI. These data also show that an activated system that generates an amount of O2- similar to that observed with FPI blunted pial artery dilation to KATP channel agonists and nitric oxide/cGMP. These data suggest, therefore, that O2- generation links PKC activation to impaired KATP channel function after FPI.
منابع مشابه
Endothelin impairs ATP-sensitive K+ channel function after brain injury.
In piglets, pial arteries constrict, ATP-sensitive K+(KATP) channel function is impaired, and cerebrospinal fluid endothelin-1 (ET-1) increases to 10-10 M after brain injury [fluid percussion injury (FPI)]. Nitric oxide (NO) elicits dilation via guanosine 3',5'-cyclic monophosphate (cGMP) and KATP channel activation. This study was designed to characterize the relationship between ET-1 and impa...
متن کاملNeuroprotective Effect of Mitochondrial Katp Channel Opener Upon Neuronal Cortical Brain of Rat Population
Purpose: So far there is no effective drug therapy to prevent neuronal loss after brain stroke. In the present study we studied effects of The Mitochondrial K-ATP channel regulators on neuronal cell population and neurological function after ischemia reperfusion in the rat. Materials and Methods: Rats temporarily subjected to four vessels occlusion for 15 minutes followed by 24 hours reperfusi...
متن کاملAdenosine primes the opening of mitochondrial ATP-sensitive potassium channels: a key step in ischemic preconditioning?
BACKGROUND Adenosine can initiate ischemic preconditioning, and mitochondrial ATP-sensitive potassium (K(ATP)) channels have emerged as the likely effectors. We sought to determine the mechanistic interactions between these 2 observations. METHODS AND RESULTS The mitochondrial flavoprotein oxidation induced by diazoxide (100 micromol/L) was used to quantify mitochondrial K(ATP) channel activi...
متن کاملThe Effect of Diazoxide on Ultrastructural Changes Following Ischemia-Reperfusion Injury of Rat Brain
A B S T R A C T Introduction: Even today there is no effective drug therapy to prevent neuronal loss after brain stroke. In the present study we studied the effect of mitochondrial KATP channel regulators on neuronal ultrastructure after ischemia reperfusion in the rat. Materials & Methods: Rats temporarily subjected to four vessels occlusion for 15 minutes followed by 24 hours reperfusion with...
متن کاملActivation of mitochondrial ATP-sensitive K(+) channel for cardiac protection against ischemic injury is dependent on protein kinase C activity.
Protein kinase C (PKC) is involved in the second messenger signaling cascade during ischemic and Ca(2+) preconditioning. Given that the pharmacological activation of mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channels also mimics preconditioning, the mechanisms linking PKC activation and mitoK(ATP) channels remain to be established. We hypothesize that PKC activity is important for the openi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 30 1 شماره
صفحات -
تاریخ انتشار 1999